
Int. J. Advanced Networking and Applications
Volume: 09 Issue: 03 Pages: 3455-3460 (2017) ISSN: 0975-0290

3455

Robust Fault-Tolerant Training Strategy
Using Neural Network to Perform Functional

Testing of Software
Manas Kumar Yogi

Department of Computer Science, Pragati Engineering College, Kakinada City, India
Email: manas.yogi@gmail.com

L. Yamuna

Department of Computer Science, Pragati Engineering College, Kakinada City, India
Email: yamuna.lakkamsani@gmail.com

--ABSTRACT--
This paper is intended to introduce an efficient as well as robust training mechanism for a neural network which

can be used for testing the functionality of software. The traditional setup of neural network architecture is used

constituting the two phases -training phase and evaluation phase. The input test cases are to be trained in first

phase and consequently they behave like normal test cases to predict the output as untrained test cases. The test

oracle measures the deviation between the outputs of untrained test cases with trained test cases and authorizes a

final decision. Our framework can be applied to systems where number of test cases outnumbers the

functionalities or the system under test is too complex. It can also be applied to the test case development when the

modules of a system become tedious after modification.

Keywords - ATNN, Fault, Neural, Test Case, Test Oracle

--- ----------------------
Date of Submission: Oct 23, 2017 Date of Acceptance: Dec 01, 2017
-- -------------------------

I. INTRODUCTION

In software testing what matters most is how much

application conforms to specifications. In practice,
agreement documents are indicators of the level to be
accepted up to which the required functionality can be
achieved. Software testing consumes substantial quantity
of time as well as effort, so strategies have to be developed
to carry out the functionality testing in a manner which is
efficient in terms to deliver quality software with
minimum effort & time. In past, Artificial Neural
Networks (ANNs) were used to handle aspects of testing.
ANNs are developed to mimic the structure and
information processing powers of the human brain. The
architectural components of a neural network are units
same as the neurons of the brain. A neural network is
formed from one or more layers of these neurons, the
interconnections of which have associated synaptic
weights. Each neuron in the network is able to perform
calculations that contribute to the overall learning process,
or training of the network. The neuron interconnections
are associated with synaptic weights that store the
information computed during the training of the network.
It is rightly said that the neural network is a massive
parallel information processing system which uses the
distributed control to learn and store knowledge about its
environment. Clearly, the two crucial factors that affect
the superior computational capability of the neural
network are its distributed design working in parallel
layers and its ability to extrapolate the learned information
to yield outputs for inputs not presented during training
phase. These properties of the neural network allow
multiple complex problems to be solved.

Data mining, pattern recognition, and function
approximation are some of the tasks that can be handled
by neural networks. In this paper, a design of Artificial
Testing Neural Network (ATNN) is proposed to train on a
suite of test cases developed manually. Sometimes manual
test cases are found to have a greater degree of fault
finding ability and this efficient element of manual test
cases are used to train the test cases on a ATNN. The
result is a set of superior or trained test cases which have
the ability to find a fault in the functionality of the
application in minimum time. If this approach is repeated
over time, these trained test cases can show better fault
finding ability over other programs under test.

II. EXISTING WORK
Domain based testing models already exist which predicts
faults taking into account fault exposing metrics which are
traditional in nature. Tools like SLEUTH use this model
for purpose of effective test suite generation with the help
of test case metrics, a synthetic test oracle judge’s
individual test case for error classification. The neural
network is imparted training on test metric input sequence
and maps them to the test oracle’s error classification
system. Once trained, the network acts as a test case
effectiveness predictor. The metrics used for the
experiment were loosely based on coverage metrics for
Domain Based Testing. In real testing environment, the set
of metrics needed for an arbitrary testing criterion is not
known well in advance. This rises a huge challenge of
selecting a dynamic approach for finalizing test case
metrics.
The results from training four networks showed how well
each network predicted individual fault severities. The no

Int. J. Advanced Networking and Applications
Volume: 09 Issue: 03 Pages: 3455-3460 (2017) ISSN: 0975-0290

3456

error net predicted the best with 94.4%, and the second-
best predictor was the most severe fault net, with 91.7%.
placed The incorrectly classified tests were placed into one
of three categories: False Positive, False Negative, and
Other Incorrect. A False Positive response was recorded
for severity 1- 3 errors when the network predicted a fault
that doesn’t truly exist. For no error severity, a false
positive meant that the neural network predicted that there
was not an error, when indeed the test case would have
uncovered one. For other severity classes, a False
Negative response was recorded when the neural net
predicted severity of no fault exposed when the test case
indicates a fault. Other Incorrect represented to tests that
were classified by the neural net as exposing a fault, but of
the incorrect type. We have used this information to
analyze three test data generation objectives.

Objective 1: Minimize Number of Test Cases
Objective 2: Widen scope of Severe severity classes
Objective 3: Reduce error rate during training

III. PROPOSED MECHANISM
2.1 Phases of Proposed Mechanism
The proposed mechanism consists of two phases - a
training phase and evaluation phase.

3.1.1 Phase 1
Hybrid Training Mechanism - Training Phase
(Construction of Trained Test Cases)

Figure.1. Mechanism of training phase

Hybrid training mechanism is resident on an ATNN

(Artificial Testing Neural Network). The ATNN is
modelled after a Feed-Forward Neural Network which has
two layers namely, Hidden Layer and Output
Layer/Visible Layer. In this work, only two layers are
considered, i.e., input layer and output layer. If we denote
yi

(l) as the output of the ith test case of input layer l, the
function of the network is represented as:

yi

l=f [∑wij
(l,l-1) yj

(l-1)+Øi
(l)], where l=1,2,…..n (1)

 Where wij

(l,l-1) represent the weight from test case ‘j’ of
layer ‘l-1’ to the test case ‘i’ of layer ‘l’. Øi

(l) is the
threshold of test case ‘i’ of layer ‘l’.

 The decision factor is considering the number of test
cases in layer ‘l’. The weight of test case is indicated by
the fault detection ability of a test case. We limit the
weight value of a test case between 0 and 1.

 With help of above principles, we present a hybrid
training mechanism for a test suite Ts. After application of
a learning algorithm on a test suite Ts, we get what we
term it as Trained Test Cases.

 Let x(1),x(2),…x(m) be given input vectors containing
test case input values and y(1),y(2)…y(m) be the
corresponding desired output vectors. We apply the back
propagation algorithm as our basis, so as to adjust the
weights and threshold of the test cases.
We calculate the sum of square error:
 M
 E= ∑ E(m) (2)
 m=1

E(m)=ly(m)-y(L)l2 ,

Where y(L) indicates vector of outputs of the network,
when input is x(m). We repeat the adjustments of weights,
so that the network maps each x(m) to y(m) as close as
possible. When this situation appears, we say the test cases
x(1), x(2) …..x(m) are now trained. The threshold is
decided based on overall testing time available.

3.1.2 Phase 2
Evaluation Phase (Decision Making based on nature of
output)

Figure.2. Mechanism of evaluation phase

 In this stage, the designed test cases of a test suite Ts

are applied under the Program under Test (PUT) and
results are given as input to the Test Oracle. In an alternate
procedure conducted parallel to the above mentioned
procedure, the trained test cases generate the predicted
outputs which are fed to the Test Oracle. Finally, the
Oracle decides the functionality of the program based on
the outcomes; the Test Oracle has comparison ability of
trained test case output with outputs of designed test cases.

3.2 Advantages of proposed training mechanism

The following are the advantages of proposed work-

i. The trained test cases can act as a Test Oracle itself
for next phase of test process like regression
testing.

ii. For a complex program to be tested, the test cases
can be designed in such a manner that during
regression testing only the test cases which are to
be executed on the modified version of the program
under test (PUT) are compared against the
corresponding trained test cases for decisive
outcome. In this way, large amount of test cases

Int. J. Advanced Networking and Applications
Volume: 09 Issue: 03 Pages: 3455-3460 (2017) ISSN: 0975-0290

3457

won’t be re-executed, thus saving testing time and
effort to appreciate level.

iii. The Test Oracle we employ is unbiased unlike
human testers. Human testers may be biased due to
prior knowledge of the program. The ATNN
contains layers of test cases with specific weights.

Figure.3. Architectural design for ATNN

 Here, th11 …th21 indicates the test cases in hidden layers.
These test cases have enhanced weight values and by
application of different test data, i.e., x1, x2….xn, their
weights change. For example, consider a test case for
checking password field. The validation rule is at least 6
characters and 2 of them should be special symbols.
The input test case, say ‘t’ will have all 6 characters as
special symbols, so this test case will fail due to high
deviation of validation rule, thus giving it a very high
weight say ‘wh’, where h=higher.
 In second layer, i.e., the first hidden layer, the test case
th1 should be designed with even higher weight. So, we
give test data input as all 6 characters blank. This will give
it weight say wvh, where vh=very high.
 In third layer, i.e., second hidden layer, we design the
test case with 1 character as special and rest is general
characters. This test case does not deviate much from the
test validation rule, so we assign this test case with weight
say wm, where m=medium.

4. EXPERIMENTAL RESULTS
We used a credit card approval system to verify the

effectiveness of our proposed mechanism. The process
that the experiment follows begins with the generation of
test cases. The input attributes are created using the
specification of the program that is being tested, while the
outputs are generated by executing the tested program.
The data undergo a preprocessing procedure in which all
continuous input attributes are normalized (the range is
determined by finding the maximum and minimum values
for each attribute), and the binary inputs and outputs are
either assigned a value of 0 or 1. The continuous output is
treated in a different manner, and the output of each
example is placed into the correct interval specified by the
range of possible values and the number of intervals used.
The processed data are used as the data set for training the

neural network. The network parameters are determined
before the training algorithm begins. The training of the
network includes presenting the entire data set for one
epoch, and the number of epochs for training is also
specified. The back propagation training algorithm
concludes when the maximum number of epochs has been
reached or the minimum error rate has been achieved. The
network is then used as an “oracle” to predict the correct
outputs for the subsequent regression tests.

Table I. Input attributes of the data

Attribute name type Attribute

type

details

Aadhar id integer Input unique

Citizenship integer Input 0-indian

1-others

State integer Input 0-29

Age integer Input 1-100

Sex integer Input 0: Female

1: Male

Region integer Input 0–6 for

different

regions in

India

Income class integer Input 0 if income

p.a. <

Rs.10k

 1. if

income

p.a. ≥ Rs
10k

2 if income

p.a. ≥ Rs
25k

3 if income

p.a. ≥ $50k

Number of dependents integer Input 1–4

Marital status integer Input 0: Single

1:

Married

Credit approved integer Output 0: No 1:

Yes

Credit amount integer Output ≥ 0

Int. J. Advanced Networking and Applications
Volume: 09 Issue: 03 Pages: 3455-3460 (2017) ISSN: 0975-0290

3458

Table II. Sample data used during training (before preprocessing)
Aadhar id Citizenship State Age Sex Region Income

class
Number of
dependents

Marital
status

Credit
approved

Credit
amount

1 1 1 23 1 1 1 1 1 0 0

2 1 12 45 1 3 1 1 0 0 0

3 1 22 65 0 4 1 0 0 1 10000

4 1 11 34 0 6 1 0 1 0 0

5 1 5 26 0 2 2 2 1 1 20000

6 1 7 28 1 2 0 1 0 0 0

7 0 7 41 1 5 2 2 0 1 10000

8 0 8 55 1 6 2 2 0 0 0

9 1 19 58 1 4 2 3 1 1 20000

In this experimental setup in MATLAB 2016 , we used
eight input units for the eight relevant input attributes (the
first is not used, as it is a descriptor for the example), and
twelve output computational units for the output attributes.
The first two output units are used for the binary output.
For training purposes, the unit with the higher output value
is said to be the “winner”. The remaining ten units are
used for the continuous output. The initial synaptic
weights of the neural network are obtained randomly and
covered a range between –0.5 and 0.5. Experimenting with
the neural network and the training data, we concluded
that one hidden layer with twenty-four units was sufficient
for the neural network to approximate the original

application to within a reasonable accuracy. A learning
rate of 0.50 was used, and the network required 1,200
epochs to produce a 0.2 percent misclassification rate on
the binary output and 5.38 percent for the continuous
output. The minimum error rate for the continuous output
(low threshold = 0.10, high threshold = 0.90).

Int. J. Advanced Networking and Applications
Volume: 09 Issue: 03 Pages: 3455-3460 (2017) ISSN: 0975-0290

3459

Table III. The minimum error rate for the continuous output (low threshold = 0.10, high threshold = 0.9

Injected fault number Number of correct

outputs

Number of incorrect

outputs

Percentage of correct

outputs classified as being

incorrect (%)

Percentage of incorrect

outputs classified as being

correct (%)

2 140 860 28.14 1.43

3 307 693 6.78 49.51

4 587 413 5.33 21.12

5 822 178 8.99 3.89

6 69 931 23.63 13.04

7 559 441 11.11 5.72

8 355 645 21.86 7.89

9 217 783 8.17 73.27

10 303 697 7.60 52.15

11 238 762 7.74 66.39

12 276 724 24.17 10.51

13 371 629 23.05 6.47

14 99 901 22.86 23.23

15 65 935 23.32 33.85

16 407 593 23.27 4.91

17 273 727 22.56 13.55

18 20 980 24.49 50.00

19 71 929 24.54 1.41

20 1000 0 0.00 4.20

21 125 875 20.91 50.40

Percentage average 16.93 24.65

Total average 20.79

Int. J. Advanced Networking and Applications
Volume: 09 Issue: 03 Pages: 3455-3460 (2017) ISSN: 0975-0290

3460

The last table summarizes the results for the minimum
error rate of the continuous output (credit amount.) The
tables include the injected fault number, the number of
correct outputs and incorrect outputs as determined by the
“oracle,” and the percentages for the correct outputs
classified as being incorrect and incorrect outputs
classified as being correct. The percentages were obtained
by comparing the classification of the “oracle” with that of
the original version of the application. The original version
is assumed to be fault-free, and is used as a control to
evaluate the results of the comparison tool. The best
thresholds were selected to minimize the overall average
of two error rates. Due to the increased complexity
involved in evaluating the continuous output, there is a
significant change in the capability of the neural network
to distinguish between the correct and the faulty test cases:
the minimum average error of 8.31 achieved for the binary
output versus the minimum average error of 20.79 for the
continuous output. An attempt to vary the threshold values
also did not result in an evident change to the overall
average percentage of error for the continuous output.

3. CONCLUSION
The main aim of this paper was to put forward a new
mechanism to test the functionality of a complex system
using the principles deployed in field of neural networks.
An Artificial Testing Neural Network was used to train the
way manual developed test cases work and to improve the
fault detecting ability of the trained test cases we used a
test oracle. In future we intend to apply the proposed
mechanism to test a application system which already has
a test case suit. The future of testing in automation is
ushering into a new era with usage of neural networks in
software testing which will bring about a revolution in the
way automation
software testing is being done now. The researchers in this
field are working diligently to evolve hybrid techniques
like we proposed in this paper to save considerable amount
of testing effort and time.

REFERENCES
[1] Anderson C, von Mayrhauser A, Mraz R. On the use

of neural networks to guide software testing
activities. In: Proceedings of ITC’95, the
International Test Conference; October 21–26, 1995.

[2] Choi J, Choi B. Test agent system design. In: 1999
IEEE International Fuzzy Systems Conference
Proceedings; August 22–25, 1999.

[3] Khoshgoftaar TM, Allen EB,Hudepohl JP,Aud SJ.
Application of neural networks to software quality
modeling of a very large telecommunications system.
IEEE Transactions on Neural Networks
1997;8(4):902–909.

[4] Khoshgoftaar TM, Szabo RM. Using neural
networks to predict software faults during testing.
IEEE Transactions on Reliability 1996;45(3):456–
462.

[5] J. Yue, C. Bojan, M. Tim, and L. Jie, “Incremental

development of fault prediction

models,” International Journal of Software
Engineering and Knowledge Engineering, vol. 23,

no. 10, pp. 1399–1425, 2013.

[6] Masoud Ahmadzade, Davood Khosroanjom, Toufiq
Khezri, Yusef Sofi, ” Test Adequacy Criteria for
UML Design Models Based on a Fuzzy - AHP
Approach ”, American Journal of Scientific Research
ISSN 1450-223X Issue 42(2012), pp. 72-84.

[7] Park, J., Baik, J.: Improving software reliability
prediction through multi-criteria based dynamic
model selection and combination. J. Syst.
Softw. 101, 236–244 (2015).

[8] Chang, P.T., Lin, K.P., Pai, P.F.: Hybrid learning
fuzzy neural models in forecasting engine system
reliability. In: Proceeding of the Fifth Asia Pacific
Industrial Engineering and Management Systems
Conference, pp. 2361–2366 (2004).

[9] Noekhah, S., Hozhabri, A.A., Rizi, H.S.: Software
reliability prediction model based on ICA algorithm
and MLP neural network. In: 7th International
Conference on e-Commerce in Developing
Countries: With Focus on e-Security (ECDC), pp. 1–
15. IEEE, April 2013.

[10] BEWOOR, L. A. et al. Predicting Root Cause
Analysis (RCA) bucket for software defects through
Artificial Neural Network. Imperial Journal of
Interdisciplinary Research, [S.l.], v. 3, n. 6, june
2017. ISSN 2454-1362.

[11] Ruilian zhao, shanshan lv, “Neural network based
test cases generation using genetic algorithm” 13th
IEEE international symposium on Pacific Rim
dependable computing. IEEE, 2007, pp.97 - 100.

[12] ZhiweiXu,KehanGao,Taghi,M.Khoshgoftaar,Naeem
Seliya,System regression test planning with a fuzzy
expert system,Information Sciences Volume 259, 20
February 2014, Pages 532-543.

[13] Bhatnagar R, Bhattacharjee V, Ghose MK (2010)
Software development effort estimation—neural
network vs regression modeling approach. Int J Eng
Sci Technol 2(7): 2950–2956.

	Keywords - ATNN, Fault, Neural, Test Case, Test Oracle
	I. INTRODUCTION
	II. EXISTING WORK
	III. PROPOSED MECHANISM

