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--------------------------------------------------------------------------ABSTRACT-------------------------------------------------------- 
This paper is intended to introduce an efficient as well as robust training mechanism for a neural network which 

can be used for testing the functionality of software. The traditional setup of neural network architecture is used 

constituting the two phases -training phase and evaluation phase. The input test cases are to be trained in first 

phase and consequently they behave like normal test cases to predict the output as untrained test cases. The test 

oracle measures the deviation between the outputs of untrained test cases with trained test cases and authorizes a 

final decision. Our framework can be applied to systems where number of test cases outnumbers the 

functionalities or the system under test is too complex. It can also be applied to the test case development when the 

modules of a system become tedious after modification. 
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I. INTRODUCTION 

In software testing what matters most is how much 

application conforms to specifications. In practice, 
agreement documents are indicators of the level to be 
accepted up to which the required functionality can be 
achieved. Software testing consumes substantial quantity 
of time as well as effort, so strategies have to be developed 
to carry out the functionality testing in a manner which is 
efficient in terms to deliver quality software with 
minimum effort & time. In past, Artificial Neural 
Networks (ANNs) were used to handle aspects of testing. 
ANNs are developed to mimic the structure and 
information processing powers of the human brain. The 
architectural components of a neural network are units 
same as the neurons of the brain. A neural network is 
formed from one or more layers of these neurons, the 
interconnections of which have associated synaptic 
weights. Each neuron in the network is able to perform 
calculations that contribute to the overall learning process, 
or training of the network. The neuron interconnections 
are associated with synaptic weights that store the 
information computed during the training of the network. 
It is rightly said that the neural network is a massive 
parallel information processing system which uses the 
distributed control to learn and store knowledge about its 
environment. Clearly, the two crucial factors that affect 
the superior computational capability of the neural 
network are its distributed design working in parallel 
layers and its ability to extrapolate the learned information 
to yield outputs for inputs not presented during training 
phase. These properties of the neural network allow 
multiple complex problems to be solved.  

Data mining, pattern recognition, and function 
approximation are some of the tasks that can be handled 
by neural networks. In this paper, a design of Artificial 
Testing Neural Network (ATNN) is proposed to train on a 
suite of test cases developed manually. Sometimes manual 
test cases are found to have a greater degree of fault 
finding ability and this efficient element of manual test 
cases are used to train the test cases on a ATNN. The 
result is a set of superior or trained test cases which have 
the ability to find a fault in the functionality of the 
application in minimum time. If this approach is repeated 
over time, these trained test cases can show better fault 
finding ability over other programs under test. 
 

II. EXISTING WORK  
Domain based testing models already exist which predicts 
faults taking into account fault exposing metrics which are 
traditional in nature. Tools like SLEUTH use this model 
for purpose of effective test suite generation with the help 
of test case metrics, a synthetic test oracle judge’s 
individual test case for error classification. The neural 
network is imparted training on test metric input sequence 
and maps them to the test oracle’s error classification 
system. Once trained, the network acts as a test case 
effectiveness predictor. The metrics used for the 
experiment were loosely based on coverage metrics for 
Domain Based Testing. In real testing environment, the set 
of metrics needed for an arbitrary testing criterion is not 
known well in advance. This rises a huge challenge of 
selecting a dynamic approach for finalizing test case 
metrics. 
The results from training four networks showed how well 
each network predicted individual fault severities. The no 
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error net predicted the best with 94.4%, and the second-
best predictor was the   most severe fault net, with 91.7%. 
placed The incorrectly classified tests were placed into one 
of three categories: False Positive, False Negative, and 
Other Incorrect. A False Positive response was recorded 
for severity 1- 3 errors when the network predicted a fault 
that doesn’t truly exist. For no error severity, a false 
positive meant that the neural network predicted that there 
was not an error, when indeed the test case would have 
uncovered one. For other severity classes, a False 
Negative response was recorded when the neural net 
predicted severity of   no fault exposed when the test case 
indicates a fault. Other Incorrect represented to tests that 
were classified by the neural net as exposing a fault, but of 
the incorrect type. We have used this information to 
analyze three test data generation objectives. 
 
Objective 1: Minimize Number of Test Cases 
Objective 2: Widen scope of Severe severity classes 
Objective 3: Reduce error rate during training 
 

III. PROPOSED MECHANISM  
2.1 Phases of Proposed Mechanism 
The proposed mechanism consists of two phases - a 
training phase and evaluation phase. 
 
3.1.1 Phase 1 
Hybrid Training Mechanism - Training Phase 
(Construction of Trained Test Cases) 
 

 
Figure.1. Mechanism of training phase 

      
Hybrid training mechanism is resident on an ATNN 

(Artificial Testing Neural Network). The ATNN is 
modelled after a Feed-Forward Neural Network which has 
two layers namely, Hidden Layer and Output 
Layer/Visible Layer. In this work, only two layers are 
considered, i.e., input layer and output layer. If we denote 
yi

(l)  as the output of the ith  test case of input layer l, the 
function of the network is represented as: 

 
yi

l=f [ ∑wij
(l,l-1) yj

(l-1)+Øi
(l)], where l=1,2,…..n                (1) 

 
     Where wij

(l,l-1) represent the weight from test case ‘j’ of 
layer ‘l-1’ to the test case ‘i’ of layer ‘l’. Øi

(l) is the 
threshold of test case ‘i’ of layer ‘l’. 
 
     The decision factor is considering the number of test 
cases in layer ‘l’. The weight of test case is indicated by 
the fault detection ability of a test case. We limit the 
weight value of a test case between 0 and 1. 
 

     With help of above principles, we present a hybrid 
training mechanism for a test suite Ts. After application of 
a learning algorithm on a test suite Ts, we get what we 
term it as Trained Test Cases. 
 
     Let x(1),x(2),…x(m) be given input vectors containing 
test case input values and y(1),y(2)…y(m) be the 
corresponding desired output vectors. We apply the back 
propagation algorithm as our basis, so as to adjust the 
weights and threshold of the test cases. 
We calculate the sum of square error: 
      M                    
 E= ∑ E(m)                                                (2) 
   m=1 
 
E(m)=ly(m)-y(L)l2 ,  
 
Where y(L)  indicates vector of outputs of the network, 
when input is x(m). We repeat the adjustments of weights, 
so that the network maps each x(m) to y(m) as close as 
possible. When this situation appears, we say the test cases 
x(1), x(2) …..x(m) are now trained. The threshold is 
decided based on overall testing time available. 

3.1.2 Phase 2 
Evaluation Phase (Decision Making based on nature of 
output) 

 
Figure.2. Mechanism of evaluation phase 

     In this stage, the designed test cases of a test suite Ts 

are applied under the Program under Test (PUT) and 
results are given as input to the Test Oracle. In an alternate 
procedure conducted parallel to the above mentioned 
procedure, the trained test cases generate the predicted 
outputs which are fed to the Test Oracle. Finally, the 
Oracle decides the functionality of the program based on 
the outcomes; the Test Oracle has comparison ability of 
trained test case output with outputs of designed test cases. 

3.2 Advantages of proposed training mechanism 

The following are the advantages of proposed work- 

i. The trained test cases can act as a Test Oracle itself 
for next phase of test process like regression 
testing. 

ii. For a complex program to be tested, the test cases 
can be designed in such a manner that during 
regression testing only the test cases which are to 
be executed on the modified version of the program 
under test (PUT) are compared against the 
corresponding trained test cases for decisive 
outcome. In this way, large amount of test cases 
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won’t be re-executed, thus saving testing time and 
effort to appreciate level. 

iii. The Test Oracle we employ is unbiased unlike 
human testers. Human testers may be biased due to 
prior knowledge of the program. The ATNN 
contains layers of test cases with specific weights. 

 
Figure.3. Architectural design for ATNN 

 
     Here, th11 …th21 indicates the test cases in hidden layers. 
These test cases have enhanced weight values and by 
application of different test data, i.e., x1, x2….xn, their 
weights change. For example, consider a test case for 
checking password field. The validation rule is at least 6 
characters and 2 of them should be special symbols.       
The input test case, say ‘t’ will have all 6 characters as 
special symbols, so this test case will fail due to high 
deviation of validation rule, thus giving it a very high 
weight say ‘wh’, where h=higher. 
     In second layer, i.e., the first hidden layer, the test case 
th1 should be designed with even higher weight. So, we 
give test data input as all 6 characters blank. This will give 
it weight say wvh, where vh=very high.  
     In third layer, i.e., second hidden layer, we design the 
test case with 1 character as special and rest is general 
characters. This test case does not deviate much from the 
test validation rule, so we assign this test case with weight 
say wm, where m=medium. 
 

4. EXPERIMENTAL RESULTS 
We used a credit card approval system to verify the 

effectiveness of our proposed mechanism. The process 
that the experiment follows begins with the generation of 
test cases. The input attributes are created using the 
specification of the program that is being tested, while the 
outputs are generated by executing the tested program. 
The data undergo a preprocessing procedure in which all 
continuous input attributes are normalized (the range is 
determined by finding the maximum and minimum values 
for each attribute), and the binary inputs and outputs are 
either assigned a value of 0 or 1. The continuous output is 
treated in a different manner, and the output of each 
example is placed into the correct interval specified by the 
range of possible values and the number of intervals used. 
The processed data are used as the data set for training the 

neural network. The network parameters are determined 
before the training algorithm begins. The training of the 
network includes presenting the entire data set for one 
epoch, and the number of epochs for training is also 
specified. The back propagation training algorithm 
concludes when the maximum number of epochs has been 
reached or the minimum error rate has been achieved. The 
network is then used as an “oracle” to predict the correct 
outputs for the subsequent regression tests. 
 
Table I. Input attributes of the data 

Attribute name  type Attribute 

type 

details 

    

Aadhar id integer Input unique 

Citizenship integer Input 0-indian 

1-others 

State integer Input 0-29 

Age integer Input 1-100 

Sex integer Input 0: Female 

1: Male 

Region  integer Input 0–6 for 

different 

regions in 

India 

Income class integer Input 0 if income 

p.a. < 

Rs.10k 

 1. if 

income 

p.a. ≥ Rs 
10k  

2 if income 

p.a. ≥ Rs 
25k  

3 if income 

p.a. ≥ $50k 

Number of dependents integer Input 1–4 

Marital status integer Input 0: Single 

1: 

Married 

Credit approved integer Output 0: No 1: 

Yes 

Credit amount integer Output ≥ 0 
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Table II. Sample data used during training (before preprocessing) 
Aadhar id Citizenship State Age Sex Region Income 

class 
Number of 
dependents 

Marital 
status 

Credit 
approved 

Credit 
amount 

1 1 1 23 1 1 1 1 1 0 0 

2 1 12 45 1 3 1 1 0 0 0 

3 1 22 65 0 4 1 0 0 1 10000 

4 1 11 34 0 6 1 0 1 0 0 

5 1 5 26 0 2 2 2 1 1 20000 

6 1 7 28 1 2 0 1 0 0 0 

7 0 7 41 1 5 2 2 0 1 10000 

8 0 8 55 1 6 2 2 0 0 0 

9 1 19 58 1 4 2 3 1 1 20000 

 
In this experimental setup in MATLAB 2016 , we used 
eight  input units for the eight relevant input attributes (the 
first is not used, as it is a descriptor for the example), and 
twelve output computational units for the output attributes. 
The first two output units are used for the binary output. 
For training purposes, the unit with the higher output value 
is said to be the “winner”. The remaining ten units are 
used for the continuous output. The initial synaptic 
weights of the neural network are obtained randomly and 
covered a range between –0.5 and 0.5. Experimenting with 
the neural network and the training data, we concluded 
that one hidden layer with twenty-four units was sufficient 
for the neural network to approximate the original 

  

 
application to within a reasonable accuracy. A learning 
rate of 0.50 was used, and the network required 1,200 
epochs to produce a 0.2 percent misclassification rate on 
the binary output and 5.38 percent for the continuous 
output. The minimum error rate for the continuous output 
(low threshold = 0.10, high threshold = 0.90). 
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Table III. The minimum error rate for the continuous output (low threshold = 0.10, high threshold = 0.9 
 

Injected fault number Number of correct 

outputs 

Number of incorrect 

outputs  

Percentage of correct 

outputs classified as being 

incorrect (%) 

Percentage of incorrect 

outputs classified as being 

correct (%) 

2 140 860 28.14 1.43 

3 307 693 6.78 49.51 

4 587 413 5.33 21.12 

5 822 178 8.99 3.89 

6 69 931 23.63 13.04 

7 559 441 11.11 5.72 

8 355 645 21.86 7.89 

9 217 783 8.17 73.27 

10 303 697 7.60 52.15 

11 238 762 7.74 66.39 

12 276 724 24.17 10.51 

13 371 629 23.05 6.47 

14 99 901 22.86 23.23 

15 65 935 23.32 33.85 

16 407 593 23.27 4.91 

17 273 727 22.56 13.55 

18 20 980 24.49 50.00 

19 71 929 24.54 1.41 

20 1000 0 0.00 4.20 

21 125 875 20.91 50.40 

Percentage average   16.93 24.65 

Total average   20.79 
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The last table summarizes the results for the minimum 
error rate of the continuous output (credit amount.) The 
tables include the injected fault number, the number of 
correct outputs and incorrect outputs as determined by the 
“oracle,” and the percentages for the correct outputs 
classified as being incorrect and incorrect outputs 
classified as being correct. The percentages were obtained 
by comparing the classification of the “oracle” with that of 
the original version of the application. The original version 
is assumed to be fault-free, and is used as a control to 
evaluate the results of the comparison tool. The best 
thresholds were selected to minimize the overall average 
of two error rates. Due to the increased complexity 
involved in evaluating the continuous output, there is a 
significant change in the capability of the neural network 
to distinguish between the correct and the faulty test cases: 
the minimum average error of 8.31 achieved for the binary 
output versus the minimum average error of 20.79 for the 
continuous output. An attempt to vary the threshold values 
also did not result in an evident change to the overall 
average percentage of error for the continuous output. 
 

3. CONCLUSION 
The main aim of this paper was to put forward a new 
mechanism to test the functionality of a complex system 
using the principles deployed in field of neural networks. 
An Artificial Testing Neural Network was used to train the 
way  manual developed test cases work and to improve the 
fault detecting ability of the trained test cases we used a 
test oracle. In future we intend to apply the proposed 
mechanism to test a application system which already has 
a test case suit. The future of testing in automation is 
ushering into a new era with usage of neural networks in 
software testing which will bring about a revolution in the 
way automation  
software testing is being done now. The researchers in this 
field are working diligently to evolve hybrid techniques 
like we proposed in this paper to save considerable amount 
of testing effort and time. 
 
REFERENCES 
[1] Anderson C, von Mayrhauser A, Mraz R. On the use 

of neural networks to guide software testing 
activities. In: Proceedings of ITC’95, the 
International Test Conference; October 21–26, 1995. 
 

[2] Choi J, Choi B. Test agent system design. In: 1999 
IEEE International Fuzzy Systems Conference 
Proceedings; August 22–25, 1999. 
 

[3] Khoshgoftaar TM, Allen EB,Hudepohl JP,Aud SJ. 
Application of neural networks to software quality 
modeling of a very large telecommunications system. 
IEEE Transactions on Neural Networks 
1997;8(4):902–909. 
 

[4] Khoshgoftaar TM, Szabo RM.   Using neural 
networks to predict software faults during testing. 
IEEE Transactions on Reliability 1996;45(3):456–
462. 

 
[5] J. Yue, C. Bojan, M. Tim, and L. Jie, “Incremental 

development of fault prediction 

models,” International Journal of Software 
Engineering and Knowledge Engineering, vol. 23, 

no. 10, pp. 1399–1425, 2013. 
 

[6] Masoud Ahmadzade, Davood Khosroanjom, Toufiq 
Khezri, Yusef Sofi, ” Test Adequacy Criteria for 
UML Design Models Based on a Fuzzy - AHP 
Approach ”, American Journal of Scientific Research 
ISSN 1450-223X Issue 42(2012), pp. 72-84. 
 

[7] Park, J., Baik, J.: Improving software reliability 
prediction through multi-criteria based dynamic 
model selection and combination. J. Syst. 
Softw. 101, 236–244 (2015). 
 

[8] Chang, P.T., Lin, K.P., Pai, P.F.: Hybrid learning 
fuzzy neural models in forecasting engine system 
reliability. In: Proceeding of the Fifth Asia Pacific 
Industrial Engineering and Management Systems 
Conference, pp. 2361–2366 (2004). 
 

[9] Noekhah, S., Hozhabri, A.A., Rizi, H.S.: Software 
reliability prediction model based on ICA algorithm 
and MLP neural network. In: 7th International 
Conference on e-Commerce in Developing 
Countries: With Focus on e-Security (ECDC), pp. 1–
15. IEEE, April 2013. 
 

[10] BEWOOR, L. A. et al. Predicting Root Cause 
Analysis (RCA) bucket for software defects through 
Artificial Neural Network. Imperial Journal of 
Interdisciplinary Research, [S.l.], v. 3, n. 6, june 
2017. ISSN 2454-1362.  
 

[11] Ruilian zhao, shanshan lv, “Neural network based 
test cases generation using genetic algorithm” 13th 
IEEE international symposium on Pacific Rim 
dependable computing. IEEE, 2007, pp.97 - 100. 
 

[12] ZhiweiXu,KehanGao,Taghi,M.Khoshgoftaar,Naeem
Seliya,System regression test planning with a fuzzy 
expert system,Information Sciences Volume 259, 20 
February 2014, Pages 532-543. 
 

[13] Bhatnagar R, Bhattacharjee V, Ghose MK (2010) 
Software development effort estimation—neural 
network vs regression modeling approach. Int J Eng 
Sci Technol 2(7): 2950–2956. 

 
 
 
 
 

 


	Keywords - ATNN, Fault, Neural, Test Case, Test Oracle
	I. INTRODUCTION
	II. EXISTING WORK
	III. PROPOSED MECHANISM

